A Ring Isomorphism and corresponding Pseudoinverses
نویسندگان
چکیده
This paper studies the set of n × n matrices for which all row and column sums equal zero. By representing these matrices in a lower dimensional space, it is shown that this set is closed under addition and multiplication, and furthermore is isomorphic to the set of arbitrary (n−1)×(n−1) matrices. The Moore-Penrose pseudoinverse corresponds with the true inverse, (when it exists), in this lower dimension and an explicit representation of this pseudoinverse in terms of the lower dimensional space is given. This analysis is then extended to non-square matrices with all row or all column sums equal to zero.
منابع مشابه
FUZZY SEMI-IDEAL AND GENERALIZED FUZZY QUOTIENT RING
The concepts of fuzzy semi-ideals of R with respect to H≤R and generalized fuzzy quotient rings are introduced. Some properties of fuzzy semiideals are discussed. Finally, several isomorphism theorems for generalized fuzzy quotient rings are established.
متن کاملYet Another Reduction from Graph to Ring Isomorphism Problems
It has been known that the graph isomorphism problem is polynomial-time many-one reducible to the ring isomorphism problem. In fact, two different reductions have already been proposed. For those reductions, rings of certain types have been used to represent a given graph. In this paper, we give yet another reduction, which is based on a simpler and more natural construction of a ring from a gr...
متن کاملRecurrent Neural Networks for Computing Pseudoinverses of Rank-Deficient Matrices
Three recurrent neural networks are presented for computing the pseudoinverses of rank-deficient matrices. The first recurrent neural network has the dynamical equation similar to the one proposed earlier for matrix inversion and is capable of Moore–Penrose inversion under the condition of zero initial states. The second recurrent neural network consists of an array of neurons corresponding to ...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کامل